

Snap on Windows
An Intel-sponsored, open-source telemetry framework

IT 447

April 4, 2017

Phillip Anderson

McKade Clements

Devin Durtschi

Mathew Kuhn

Jesse Millar

Coach: Dr. Jay Ekstrom

Sponsor: Taylor Thomas

Table of Contents
Table of Contents

Executive Summary

Introduction

Concept Definition
Background
Stakeholders

Intel
Companies with Windows Systems
Operators of Windows Systems
Open-source Maintainers of the Snap Project
Members of the Snap Community

Stakeholder Requirements
Validation
Verification

System Definition
System Requirements
Logical Architecture
Project Component Details

Build Windows Test Environment
Perfmon Plugin
Sysinternals Plugin
Active Directory Plugin
Create an Automated Build Script for Snap

Critical Path
Verification and Validation

Project Management
Objective Statement
List of Deliverables

Conclusion

References

Appendix

Source Code
Constraint Matrix
Governance Framework
Communication
Acceptance Documentation
Gantt Chart

Executive Summary
Snap for Windows is a Brigham Young University Information Technology 2016-2017 capstone
project. Snap is an open-source telemetry system headed by Intel, meant to facilitate the remote
monitoring of large networks and company infrastructures. Snap works through three types of
“plugins,” which allow for modularized collecting, processing, and publishing of system metrics.
These metrics can include data such as cpu usage, number of processes running on a system, and
memory available.

Previously, Snap’s functionalities were constrained to Linux systems only, and were not
compatible with Windows. This prevented a large portion of company infrastructures from
utilizing Snap, as companies typically run the Windows operating system on a large portion of
their network. The objective for this project included automating Snap’s build process onto
Windows through a build script and creating three separate collector plugins based on the
Windows’ Perfmon, Active Directory, and Sysinternals applications.

The motivation behind this objective was first, to expand Snap’s capabilities to allow companies
to utilize it on a larger portion of their infrastructure, and second, to reduce required system
maintenance/monitoring efforts, thus saving employees’ time and saving companies money.
Snap is expected to assist in increasing Intel’s revenue by making Windows products (which run
on Intel processors) more marketable. Although there are similar products on the market,
including a native telemetry system built into Windows 10, Snap is unique in that it is extremely
modular through the plugin model, it is very customizable through tasks and configuration
specifications, and it is highly scalable to large networks.

The customer for the project included Intel, but also the entire Snap community and other
companies who will be using Snap. All of their input was included in the plugin and metric
choices specified in the project objective. We were able to reach our goal of completing the three
plugins mentioned, as well as the build script. The Perfmon and Active Directory plugins have
also been merged into the official Snap repository.

Several lessons were learned throughout the course of the project which will be critical for the
success of future endeavors. First, open-source projects have a very different nature than
start-to-finish projects. Snap involved changing libraries, lack of code ownership, changing
documentation, and compliance with Snap best practices. It provided a very real understanding
of experiencing success after joining a pre-existing team. Furthermore, Snap involved risks due
to the nature of open-source projects. This required that we understand and implement
risk-management to the best of our abilities, using a Gantt Chart and really analyzing the risks.

In terms of future work, our plugins will most likely be converted from a Powershell base to
WMI. Both are methods of accessing the native Windows system-data API, but WMI has less
overhead (although it is more complicated to implement). Other existing Snap plugins will also
be ported to Windows, such as Docker. Finally, a machine learning algorithm will most likely be
developed so that Snap not only collects, processes, and stores data, but will also be able to act

based on that data. The details of each of the key points addressed in this Executive Summary are
discussed more extensively below.

Introduction
Telemetry is the gathering of system metrics, or internal critical information, from a distance.
This often is used in the business world referring to sales and other business metrics that lead C
level executives to pivot the direction in which a company is headed. Alternatively, there are
other types of data that can be remotely gathered to help in decision making, such as in the
auditing of a company’s technical infrastructure. Having data on the computing assets of a
business is useful for the purposes of preemptive action or immediate reaction to scenarios that
may cause harm or complications to the function of the system in question. For example,
measuring the number of established TCP connections there are on individual machines forming
a cluster of file servers makes it possible to analyze and then make decisions for load balancing
or troubleshooting root causes of debilitating issues. This allows the servers to continue
uninterrupted in their designated tasks and maximizes their productivity. All businesses are
looking for better and cheaper ways to use telemetry to make these types of daily decisions.There
are not many solutions currently on the market to fill this need. Those that do exist are costly or
are complicated enough to discourage a wide range of users from adopting them. Ad-hoc
methods are then implemented and using cron jobs and scripts or Powershell, and often crucial
metrics can be lost.

Snap is an open source project started in July of 2015 with the intent of creating a single API for
collecting telemetry data in Unix-based systems. Snap also allows for collected data to be
processed as well as published. Processing data involves adding context, or “data about data,” to
the collected information. It also allows for generating new information from the data collected,
such as a calculated average of a certain metric across all devices in a cluster. This can then be
published, or presented in a logical and directed way, and can be analyzed by the user in the form
of text files, database outputs, or analytic platforms. By fully conglomerating this process of
collecting, processing, and publishing telemetrics Snap simplifies the utilization of this internal
data and gives this power to anyone that needs it.

The problem that Snap has come up against in its development has been the limiting factor of
being Unix unique while many businesses utilize Windows based systems. That is why Intel
came to us to get some help in expanding the base of this already versatile software. Snap needed
a jumpstart in breaching the platform barrier, and that is what we have done. This document was
created as a part of the Brigham Young University Information Technology capstone class of
Fall 2016-Winter 2017. It outlines the process that was used to port the Snap Open Telemetry
framework to the Windows Platform and the finished products being several plugins for the
collection of Windows specific application’s metrics.

Concept Definition

Background
Plugins are how Snap collects and manipulates system data. Plugins are modular programs,
written in Go, which can be mixed and matched to allow for customized metric output. Plugins
are grouped into collector, processor, and publisher categories and run on top of the main Snap
process. The data from the plugins is accessed through the Snap API. Plugins can be built and
ran as needed to collect whatever type of telemetry data system administrators may need, making
them a critical component to Snap.

Plugins are run using “tasks.” Tasks define the data collector, the amount of time the collector
should run (whether infinitely or for a certain duration), the plugin used to process the data, and
the publisher plugin which outputs the data in a certain format. Tasks can also define the metrics
gathered from a plugin. For example, the netstat plugin may include metrics for open and
established TCP connections but the task may only require the collecting of open TCP
connection information.

There are a number of products similar to Snap. Nagios, which performs monitoring of network
devices, is one example of a Snap alternative. Snap’s strength lies in how modular and
streamlined it is. Windows has its own telemetry collection tool, but it is limited to
Windows-based networks and is thus not as scalable as Snap.

Because the Snap project is open source, the code behind Snap is available in a GitHub
repository where a thriving community actively works to make Snap better. Common
contributions are bug fixes, additional plugins, and sharing of information through searchable
discussions. The repository is well documented and contains deployable Snap binaries.

Prior to this project, Snap plugins were only built for the Unix environment. However, there has
been a large push by the Snap community, which not only includes individuals but also large
corporations like Intel and Staples Inc., to make it possible to use Snap on Windows-based
systems. Since Snap is written in the Go programming language, some of the existing Snap
plugins, like netstat, could have cross-compiled for Windows. However, in order to make it
worthwhile to users, a full-featured Windows port was necessary. This meant plugins needed to
be written to gather telemetry data from Windows programs like Active Directory and Perfmon.

Our task, as defined by our Objective Statement, was to automate the Snap installation process
and port at least three Snap plugins to Windows. At the completion of our project, the install
process is automated and painless and we have built Perfmon, Sysinternals, and Active Directory
plugins which have been accepted into the official Snap repository.

Stakeholders
The following table is a summary of each of the stakeholders, including the role of each party
within Snap, and the benefits received by each party upon completion of our project. Below the
table are brief, high-level descriptions of each stakeholder.

Stakeholder Interest Benefit

Intel Creators of Snap and sponsor of project Increased sales; double market
share by porting to Windows

Companies with
Windows Systems

Building and using plugins for their own monitoring
needs

Easier monitoring and
metric-collecting; Less need to
hire for monitoring

Operators of Windows
Systems

Contributing to Snap plugins on behalf of
companies

Makes managing systems easier

Open-Source
Maintainers of Snap
Project

Participating in Snap creation and maintaining Economic benefits include selling
more Intel products which run
Windows and monitoring
environments more easily

Members of the Snap
Community

Participating in Snap community; May be
members of above stakeholder groups as well

Learn more about telemetry

Intel
Intel holds a direct business interest in getting Snap to work on Windows because Windows is
run almost exclusively on Intel processors. Having more functionality added to Windows helps

Intel sell more of their own products. By improving upon a telemetry framework specifically
designed to monitor Intel devices, customers can use Snap to reduce the labor needed to monitor
systems, thus reducing their total cost of ownership.

Companies with Windows Systems
Companies with existing Windows systems could benefit greatly from a more concise tool for
telemetry. Utilizing Snap allows companies more flexibility and adaptability by making it easier
to integrate with Unix based systems should they desire to “mix and match” or eventually
migrate from Windows systems to Unix systems.

Native Windows support in Snap reduces the total cost of ownership for third-party companies
by limiting the need to train operators in more than one telemetry system or having several
operators to maintain separate systems.build process as well

Operators of Windows Systems
Distinct groups of operators such as app developers, system administrators, lab managers, and
database administrators can all use Snap to monitor system performance of the products they
build and administrate.

Open-source Maintainers of the Snap Project
Maintainers of the open-source Snap project are the main shareholders. The maintainers are the
ones that control which plugins and features are added to the Snap code base. Project maintainers
have an interest in seeing that the project functions properly as a whole.

Members of the Snap Community
Members of the Snap community use Snap and are not actively involved in the development of
the project. Their interests revolve around the ability to more easily and quickly gather, process,
and publish data from their systems in a user-friendly format. Regardless, these users have a
vested interest in keeping the project going because Snap is a part of their systems.

Stakeholder Requirements
The following is a list of requirements as obtained from each of our stakeholders and how we
fulfilled each requirement:

- Snap executable compiled for Windows

- A Snap executable was requested so that pre-built binaries can be distributed to
those who would like to use Snap, rather than mandating that users figure out the
compile process. To fulfill this requirement, we worked with Snap maintainers to
modified the existing Snap installation scripts to work on Windows. We do not
have access to the Snap build pipeline, but Snap project maintainers can use our

scripts to automatically generate Snap executables for distribution on the official
website.

- Automated build script to compile Snap for Windows

- The process to compile Snap for Windows should be automated according to
stakeholder requirements. This will allow for members of the Snap community to
more easily compile Snap, rather than going through a more tedious and
complicated manual process. As mentioned above, we worked with Snap
maintainers to modify existing Linux build scripts to function on Windows. These
scripts have been accepted into the official repositories.

- Plugins written in Go

- The Windows-specific plugins we were asked to write were written in Go to
provide greater maintainability for the project maintainers, as they are most
familiar with this language.

- Plugin functionality written in language native to Windows

- The gathering of system metrics on Windows was requested to be done via
Windows-default methods. This left us with the options of either PowerShell or
Batch scripting, as these languages provide native interfaces into the Windows
API’s and allow for greater ease in gathering the metric data. We largely utilized
PowerShell and created plugins that met stakeholder requirements.

- Follow plugin-authoring framework

- To simplify the process of merging our code into the official Snap repositories,
we were asked to observe and respect the interfaces of the plugin libraries. This
was slightly more complicated than anticipated because of the deprecating of the
initial framework halfway through the project, but we were able to meet
stakeholder demands by quickly pivoting to the new framework.

- Sysinternals plugin

- The Sysinternals plugin, as requested by the Snap community, provides metrics
associated with common Sysinternals tools. It integrates seamlessly with the Snap
framework, providing data in a form which the Snap daemon understands.

- Perfmon plugin

- Perfmon was specifically requested by a member of the Snap community and, per
the request, provides common metrics associated with the native Windows
Perfmon graphical application, such as CPU utilization, memory available, and
memory used. It integrates seamlessly with the Snap framework, providing data in
a form which the Snap daemon understands.

- Active Directory plugin

- The Active Directory plugin was also requested by interested parties and provides
desired metrics from Active Directory. It should integrate seamlessly with the
Snap framework, providing data in a form which the Snap daemon understands.

- Testing of each plugin

- The plugins were tested on our local machines and have unit tests written to verify
that the functionality remains stable from release to release. This simplifies the
maintenance and deployment process for Snap maintainers.

- Issue logging system

- To satisfy the class requirement of issue tracking, our team utilized the GitHub
issue logging system throughout the project. This made our team interaction more
fluid and will allow the project to be more maintainable after we graduate.

- Project documentation

- To satisfy further class and stakeholder requirements, any special bits of
information needed to work with our plugins have been recorded and shared for
maintainability purposes. Existing documentation has been modified as well, to
include instructions for using Snap on Windows platforms in addition to
Unix-based platforms.

Validation
Throughout the early stages of our project, we spoke mostly with our sponsor, Taylor Thomas,
and discussed each of the above requirements during the course of several video-conferences. As
we gained a better understanding of the requirements and presented them to Taylor during these
meetings, he was able to approve each of them. At the conclusion of our project, Taylor has
approved personally all our code and methods and worked with his superiors at Intel to obtain
final approval.

Verification
Now that our code is complete, we have met and conversed with several Intel representatives to
review the requirements and request feedback in terms of what we may need to modify. Slight
modifications were made and documented on the GitHub repository and formal approval was
given. The code we’ve written is now merged into the main Snap repositories.

System Definition

System Requirements
● Snap executable compiled for Windows

○ The Windows executable should have the same functionalities as the binary build
for Unix systems

● Automated build process to install Snap on Windows

○ The installation process should be as simple and standard as possible to allow as
many system administrators as possible to install Snap quickly

● Plugins written in Go

○ The code for our plugins needs to be readable and easily maintainable

○ Our code should be simple to cross-compile

● Plugin functionality written in language native to Windows

○ Our code should work well in Windows environments

○ Metrics should be gathered and manipulated in the most efficient way possible to
avoid introducing latency into client systems

● Follow plugin-authoring framework

○ Plugins must integrate well with existing Snap framework

○ Plugins should be completely modular

● Sysinternals plugin

○ Must pass PsUtils data to Snap

● Perfmon plugin

○ Must gather CPU and memory utilization metrics

● Active Directory plugin

○ Build and maintain a documented development environment which implements
Active Directory

○ Retrieve, parse, and send Active Directory usage data to Snap

● Testing of each plugin

○ Write small unit tests as mandated by the

○ Development environment which implements a domain controller

○ Development environment implements Active Directory

● GitHub issue log

○ When we finish the capstone project, we should leave behind enough
documentation and searchable discussion about our project, code and the issues
we hit as possible

● Project documentation

○ Documentation is stored in public and searchable GitHub wiki format

Logical Architecture

Project Component Details
In order to fulfill our objective of porting Snap from Unix-based environments to Windows in a
way which is maintainable by the project maintainers, we completed the following tasks. The
progress we made for each major aspect of our project is technically detailed below:

Build Windows Test Environment
Because we are working within a university setting, the current systems to which we have
access are all production environments that have important functions to the school. To be
able to test our developments to Snap on the Windows platform we needed a separate
environment that was isolated from the school’s network to protect these production
environments from possible damage of services from an untrusted domain within the
same network.

To do this we have built a virtualize testing environment on a server using VMWare
ESXi 6 which implements a domain controller as well as Active Directory in order to
fully test each plugin in a cluster setting. This also allowed us to test the Active Directory
plugin. To isolate this domain from the main IT department domain we have virtualized a
separate vlan within the ESXi that works as an internal LAN that connects out to the
external WAN through a pfSense firewall configured to allow Remote Desktop through
to each of the nodes within. There are three Windows 10 nodes and a Ubuntu 16.04
Server node that are all joined to the Active Directory domain controller.

Perfmon Plugin
The Perfmon plugin is based on the Windows Perfmon application, which provides a
graphical interface to Windows systems metrics. These metrics include items such as
cpu-usage, memory available, memory committed, etc. This plugin collects 12 of these
metrics through the Snap Framework.

The plugin is based around GoLang (in order to conform with Intel best practices) and
Windows PowerShell. Version 3.0 or higher of PowerShell is needed as the script uses
the “Get-Counter” cmdlet. This particular cmdlet enables the plugin to access Windows
native API, which provides access to the perfmon metrics. As PowerShell inherently
comes with large amounts of overhead, GoRoutines were utilized to add concurrency to
the plugin. GoRoutines act as very lightweight threads to increase execution speeds.
Parallelism was also added to increase speeds, by executing the plugin in separate,
parallel instances, based on how many processors the system has. This brought the time is
took to retrieve all 12 plugins down from 23 seconds to 3 seconds. As the added
concurrency would then occasionally lead to intermittent failures, a mutex was added to
the base metric-storing map used in the code. The mutex locked the map until a particular
thread was finished executing, and then released the map for another thread to use.

The rest of the Perfmon plugin code followed Snap best practices in terms of integrating
the functionality with Snap. Unit tests were created to ensure correct functionality of the
plugin, and integration tests were performed by simply running the plugin through Snap.
After extensive code review and revisioning, the Perfmon plugin has been merged with
the official Intel repository.

Sysinternals Plugin
The Sysinternals plugin uses an executable called PsList. This file comes from
Microsoft’s Sysinternals suite which has about 40 executables relating to system
management. PsList is used to give detailed information about processes currently
running on the Windows machine. This plugin is utilized to gather information about the
total number of processes, total number of threads, and total number of handles. The
plugin initially checked for the PsList executable and downloaded it from the Microsoft
website if necessary. The community developers found this feature to be too intrusive
and felt that those using the plugin should download it themselves.

This plugin has its own unit tests and is has been tested to ensure that it functions with
Snap properly. Developers in the Snap community have looked at the plugin and
submitted feedback for it.

Active Directory Plugin
The Active Directory plugin followed a very similar path to completion as the Perfmon
plugin. The only difference is that we were given specific metrics to gather for this plugin
by the Snap community. Upon completion, the Active Directory plugin collects 19

different metrics, including metrics such as DRA (Directory and Resource Administrator)
Outbound Bytes, Kerberos Authentications, and and LDAP Client Sessions.
The Active Directory plugin followed a very similar path to completion as the Perfmon
plugin. The only difference is that we were given specific metrics to gather for this plugin
by the Snap community. Upon completion, the Active Directory plugin collects 19
different metrics, including metrics such as DRA (Directory and Resource Administrator)
Outbound Bytes, Kerberos Authentications, and and LDAP Client Sessions.

Like the Perfmon plugin, the Active Directory plugin utilizes GoLang, PowerShell,
concurrency, and parallelism. It includes unit tests and has been tested with Snap itself.
Due to overhead restraints, we have recommended gathering only 16 metrics at a time,
but in future revisions (where WMI will be used in place of PowerShell), all metrics
should be collectable at once. The plugin has been code reviewed, revised, and merged
into the official Snap repository.

Create an Automated Build Script for Snap
Existing scripts have been modified to automate the build process so that future users
who wish to compile their own executables do not have to follow a complex manual
process, thus minimizing risk. These changes to the build scripts have been merged with
the official Snap repositories.

Critical Path
The critical path for our project began with gathering a basic understanding of the existing Snap
framework and getting introduced to the community. From there, we started to manually compile
Snap for Windows, as that was required for anything else to work. Once we understood that
process and had Snap running on Windows machines, we divided into sub-teams. One sub-team
focused on building an automation script to compile Snap automatically. Two other teams
focused on writing the three plugins. The final team setup a testing server environment with
necessary components, perform plugin testing, and document necessary data relevant to
maintaining our plugins. As each sub-team finished their initial task, they would assist other
teams with remaining tasks. At the completion of each major task, we created a pull request on
GitHub to merge our code with the main Snap repository, which officially signified that task was
complete.

Verification and Validation
In order to verify and validate the fulfillment of each system requirement, we submitted our
completed automated build process for Windows, as well as our completed plug-ins, to the Snap
community via Pull requests on GitHub for approval. This included documentation and unit tests
for each feature. In the case that adjustments were needed, the Snap community notified us via
the GitHub pull request and we made the necessary adjustments. Upon approval, the community

merged our contribution into the existing Snap repository signifying it was up to the
community’s standard.

Project Management

Objective Statement
Automate the Snap build process and port at least three Snap data collection plugins for
Windows, including Perfmon, Sysinternals, and Active Directory by March 20th.

List of Deliverables
Our project of porting Snap and a collection of plugins to Windows has been completed and the
Snap project maintainers have accepted our code for each of the plugins and merged them into
the master branch of their GitHub repository. As part of our pull requests that presented our work
to the project maintainers, we provided the deliverables listed below.

● Plugin documentation describing the functionality of our newly-built plugins

● Unit tests for our new plugins to automatically verify that the plugins work as intended

● A script to automatically build Snap for a windows machine

● A collection of Snap plugins built for Windows systems

In order to complete the academic aspects of our capstone project, we provided the deliverables
below.

● Project presentation slides for our final presentation

● A project video outlining our project in a concise and engaging way

Conclusion
Through Snap’s improved way of collecting metrics through a single API, adding this
functionality to Windows systems greatly improves troubleshooting and monitoring on those
systems. Even someone with minimal system administration skills can now install Snap to
Windows systems through an MSI and begin collecting crucial data with the plugins that have
been created through this project. Those that are more technical can take this base we have
provided and build upon it to gain functionality that will further Snap’s capability to perform
even more fully in the Windows’ world.

Possible future work includes porting more plugins from Linux to Windows (ie. Docker). As our
plugins use a PowerShell base, and PowerShell involves substantial overhead, the maintainers
expect to convert the PowerShell code to a WMI implementation. WMI is more complex, but
requires less overhead than PowerShell. Furthermore, a machine learning algorithm will most

likely be created and implemented. This algorithm will enable Snap to make certain decisions
based on the gathered data, further facilitating the monitoring of large infrastructures.

Working in the open source realm is something different that the other projects will not deal
with, but that we found challenging and satisfying. There is a wide horizon in front of Snap and
because it is an established open source project with an actively involved community, there is
much that could happen with it now that we have bridged a significant gap.

References
[1] Cheney, D. (n.d.). Cross compilation with Go 1.5. Retrieved October 05, 2016, from
http://dave.cheney.net/2015/08/22/cross-compilation-with-go-1-5

[2] Command go. (n.d.). Retrieved October 05, 2016, from https://golang.org/cmd/go/
[3] Develop Perfmon windows performance monitor plugin · Issue #1175 · intelsdi-x/snap. (n.d.).
Retrieved November 05, 2016, from https://github.com/intelsdi-x/snap/issues/1175

[4] Go by Example. (n.d.). Retrieved October 05, 2016, from https://gobyexample.com/

[5] How to Write Go Code. (n.d.). Retrieved October 05, 2016, from
https://golang.org/doc/code.html

[6] Intelsdi-x/snap. (n.d.). Retrieved November 05, 2016, from
https://github.com/intelsdi-x/snap/blob/master/docs/BUILD_AND_TEST.md

[7] PLUGIN CATALOG. (n.d.). Retrieved October 05, 2016, from
https://github.com/intelsdi-x/snap/blob/master/docs/PLUGIN_CATALOG.md

[8] SNAP REST API. (n.d.). Retrieved October 05, 2016, from
https://github.com/intelsdi-x/snap/blob/master/docs/REST_API.md

[9] Support flow collector like sflow or netflow? · Issue #1030 · intelsdi-x/snap. (n.d.). Retrieved
October 05, 2016, from https://github.com/intelsdi-x/snap/issues/1030

[10] Windows support · Issue #671 · intelsdi-x/snap. (n.d.). Retrieved November 05, 2016, from
https://github.com/intelsdi-x/snap/issues/671

Appendix

Source Code
Note: As the code bases are very large for each plugin, we are simply providing links to their
GitHub repositories as instructed. The official repository versions are Private right now (they

https://github.com/intelsdi-x/snap/issues/1030
https://github.com/intelsdi-x/snap/blob/master/docs/REST_API.md
https://github.com/intelsdi-x/snap/blob/master/docs/BUILD_AND_TEST.md
https://github.com/intelsdi-x/snap/blob/master/docs/PLUGIN_CATALOG.md
https://github.com/intelsdi-x/snap/issues/1175
https://golang.org/doc/code.html
https://gobyexample.com/
https://github.com/intelsdi-x/snap/issues/671
https://golang.org/cmd/go/
http://dave.cheney.net/2015/08/22/cross-compilation-with-go-1-5

are not viewable unless you have been invited to view the repo), so these will be placed in
parenthesis (if available), with secondary repository for each listed below:

Perfmon plugin: https://github.com/Snap-for-Windows/snap-plugin-collector-perfmon
(https://github.com/intelsdi-x/snap-plugin-collector-perfmon)
Sysinternals plugin: https://github.com/Snap-for-Windows/snap-plugin-collector-sysinternals
Active Directory plugin:
https://github.com/Snap-for-Windows/snap-plugin-collector-active-directory
(https://github.com/intelsdi-x/snap-plugin-collector-active-directory)
Build scripts: https://github.com/intelsdi-x/snap/blob/master/scripts/build_all.sh

Constraint Matrix

 Scope Schedule Resources

Most Constrained X

Moderately Constrained X

Least Constrained X

The schedule of our project is by far its most constrained aspect in our constraint matrix. We
simply must have the project completed by mid-March in order to be prepared to present our
work at the end of the capstone class. The scope of the project is moderately constrained because
we are making a port of existing code, not adding sweeping new features.

Our resources are nearly limitless within the scope of the project. We have access to an active
communication medium with the creators and maintainers of the project, a direct line of
communication to our sponsor, full-featured Snap documentation, and, hopefully, far more time
than we will need to complete our additions.

Governance Framework
In order for the project to progress as smoothly as possible, we have agreed upon a governance
framework. Utilizing this governance framework to decide on individual roles inside the team
now will make enforcing team responsibilities easier than if conflicts were resolved when they
arise later.

Any and all conflicts among team members or pertaining to project decisions will be resolved by
team majority vote. These decisions become final when voted upon and written down in the
GitHub project manager. If the conflict involves the open-source code we are contributing to, the
issue should be resolved by leaders of the open-source project via Slack or discussion in a
GitHub issue thread. As contributors to the project, we want to ensure that we are following the
procedures already established by the Snap community and not stepping outside the bounds
provided to us.

https://github.com/intelsdi-x/snap/blob/master/scripts/build_all.sh
https://github.com/intelsdi-x/snap-plugin-collector-perfmon
https://github.com/intelsdi-x/snap-plugin-collector-active-directory
https://github.com/Snap-for-Windows/snap-plugin-collector-sysinternals
https://github.com/Snap-for-Windows/snap-plugin-collector-active-directory
https://github.com/Snap-for-Windows/snap-plugin-collector-perfmon

We will meet as a team twice a week, once with only the students on the team, and the other with
the students and coach. The first meeting will happen on Wednesday evenings and the second
will happen on Friday mornings. The Wednesday meeting must be attended by all members of
the team either in person or via Google Hangouts. The Friday meeting should be attended in
person by all team members. We will meet with our sponsor bi-weekly via the Zoom team
collaboration application. As member availability may vary for these Zoom meetings, only
members who are able to attend will be required to participate. If members consistently miss any
of these meetings, we will speak as a group and decide upon a time that works better for
everyone.

Communication
Frequent, clear, and searchable communication is integral to the success of this project. For
questions regarding the needs of the Snap community or general Snap discussion, we will use
Slack. Slack is the main form of communication currently used by the project maintainers at
Intel. Google Hangouts will be used for capstone team communication, remote meetings, and
general discussions between team members. As an alternative means of communication, a Slack
channel has been created specifically for our team’s use.

Our meeting notes, personal notes, and other class-related documentation will be kept in a shared
Google Drive folder. All other documentation will be housed and maintained on our GitHub
project’s wiki. GitHub’s project management features will be used to keep track of our task list
and critical path. GitHub provides a number of tools that make tracking the progress of fixing
bugs and adding features very fluid.

Acceptance Documentation
As part of the contribution guidelines, the Snap project maintainers request a single GitHub pull
request with one commit per feature added. To accomplish this, we have created a GitHub
organization that includes every member of our capstone team and forked the Snap project into
our organization. Forking a project in GitHub makes a copy of the code as it currently stands and
enables us to modify files without restriction.

When we are done adding and testing a specific feature, we will use GitHub’s interface to create
a pull request. Creating a pull request sends a notification to the Snap project maintainers
informing them that there is new code for them to review and potentially merge into the master
branch of their project. Once our code is accepted and merged, our changes will be made
available to the community in the precompiled Snap binaries.

Additionally, we will need to draft documents outlining our feature addition proposals to give to
our sponsor. This step can be seen as a preliminary requirement approving of our plans before
we set off in a potentially wrong direction.

Gantt Chart

Unique
ID

Phase Activity Task Name Duration Start Finish Predecessors

1 Planning
2 Read Snap

Documentation
1 wk 05-09-2016 09-09-2016

3 Write initial project
document

1 wk 12-09-2016 16-09-2016

4 Complete Final
Document/define
requirements

3 wks

5 Team
6 Learn Go 2 wks 12-09-2016 23-09-2016
7 Learn Github Project

Management
2 wks 12-09-2016 23-09-2016

8 Analyze existing
Snap plugins

3 wks 19-09-2016 07-10-2016

9 Install Windows
locally for
development

3 wks 26-09-2016 14-10-2016 7,6

10 Understand Glide
package management

1 wk

11 Prototype
12 Find PowerShell

script for Perfmon
1 wk 03-10-2016 07-10-2016

13 Find PowerShell
script for Sysinternals

1 wk 03-10-2016 07-10-2016

14 Get images for
slideshow
presentation

1 wk 31-10-2016 04-11-2016

15 Implementation
16 Build Test

Environment

17 Install ESX 3 wks 26-09-2016 14-10-2016
18 Install firewall 4 wks 17-10-2016 11-11-2016
19 build internal domain 3 wks 14-11-2016 02-12-2016
20 Get licensing for

servers and nodes
3 wks 28-11-2016 16-12-2016

21 Elevate role of server
to Domain Controller

1 wk 19-12-2016 23-12-2016 20

22 Add roles for AD and
others mentioned by
community

2 wks 26-12-2016 06-01-2017 21

23 Build Script for
Windows

24 Research Makefiles 1 wk 19-12-2016 23-12-2016
25 Investigate CMake 1 wk 19-12-2016 23-12-2016

26 Investicate Batsh 1 wk 09-01-2017 13-01-2017
27 Build dep.bat 6 wks 16-01-2017 24-02-2017 26

28 Build build_snap.bat 6 wks 16-01-2017 24-02-2017
29 Build

build_plugin.bat
6 wks 16-01-2017 24-02-2017

30 Build
build_plugins.bat

6 wks 16-01-2017 24-02-2017

31 Build build_all.bat 5.2 wks 23-01-2017 27-02-2017
32 Sysinternals

Plugin

33 Research different
sysinternals tools

1 wk 07-11-2016 11-11-2016

34 Research different
ways to install
sysinternals tools

1 wk 07-11-2016 11-11-2016

35 Set up development
environment

1 wk 14-11-2016 18-11-2016

36 Run tool from Go 1 wk 14-11-2016 18-11-2016
37 Collect Output from

Go
1 wk 21-11-2016 25-11-2016

38 Create schema for
parsing from tool

1 wk 05-12-2016 09-12-2016

39 Parse Output from
tool

4 wks 19-12-2016 13-01-2017

40 Pass data into Snap
functions

2 wks 30-01-2017 10-02-2017

71 Deploy in test dev
env.

2 wks 13-02-2017 24-02-2017 40,39,38,37,36,35

41 Create documentation
for plugin

1 wk 06-02-2017 10-02-2017

42 Get plugin accepted
by maintainers

5 wks 26-02-2017 30-03-2017 42,41

43 Implement changes
requested by
maintainers

5 wks 24-02-2017 30-03-2017

44 Perfmon Plugin
45 Understand data flow

of rand plugin
4 wks 07-11-2016 02-12-2016

46 Run a test plugin with
new plugin lib

4 wks 09-01-2017 03-02-2017

47 Create dummy
perfmon plugin

2 wks 23-01-2017 03-02-2017

48 Get dummy plugin to
run with Snap

2 wks 23-01-2017 03-02-2017

49 Create PowerShell
script to get 3
counters

2 wks 09-01-2017 20-01-2017

50 Create Go package to
get PowerShell data

2 wks 16-01-2017 27-01-2017

51 Integrate with Glide 2 wks 23-01-2017 03-02-2017
52 Create unit tests for

single system
1 wk 06-02-2017 10-02-2017 52

53 Deploy in test dev
env.

1 wk 13-02-2017 17-02-2017 53,52,51,49,48,47,46

54 Create documentation
and comment code

5 wks 23-01-2017 24-02-2017

55 Get plugin accepted
by maintainers

7 wks 20-02-2017 07-04-2017 54

56 Implement changes
requested by
maintainers

7 wks 13-02-2017 31-03-2017

57 Active
Directory
Plugin

58 Research Metrics to
be collected with AD

1 wk 16-01-2017 20-01-2017

59 Find and write
Powershell scripts

2 wks 16-01-2017 27-01-2017

60 Build Go script to run
powershells

2 wks 30-01-2017 10-02-2017 60

61 Integrate script with
Snap

2 wks 06-02-2017 17-02-2017

62 Run tests in test
environment with
functioning AD

2 wks 13-02-2017 24-02-2017 61

63 Write documentation
and comment code

6 wks 17-01-2017 27-02-2017

64 Get plugin accepted
by maintainers

5 wks 28-02-2017 03-04-2017 64,63

65 Implement changes
requested by
maintainers

5 wks 13-03-2017 14-04-2017

66 Windows
Docker Plugin

67
68 Closure
69 Documentation of

Work Done
3 wks 13-03-2017 31-03-2017

70 Final Pull Request 4 wks 03-04-2017 28-04-2017 70

